Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
COLLOCATION METHODS FOR CONTINUATION PROBLEMS IN NONLINEAR ELLIPTIC PDEs
A new class of collocation methods for nonlinear elliptic partial diierential equations is described in the context of numerical continuation studies. It is shown how the methods are well-suited for a nested dissection solution algorithm , thereby reducing computational complexity. Numerical results are given to illustrate the accuracy of the methods.
متن کاملA review of stability and error theory for collocation methods applied to linear boundary value problems
An analysis of discretizations of the Helmholtz equation in L 2 and in negative norms (extended version) Flatness of semilinear parabolic PDEs-A generalized Chauchy-Kowalevski approach 27/2012 R. Donninger and B. Schörkhuber Stable blow up dynamics for energy supercritical wave equations 26/2012 P.
متن کاملSuperconvergent interpolants for collocation methods applied to Volterra integro-differential equations with delay
Standard software based on the collocation method for differential equations, delivers a continuous approximation (called the collocation solution) which augments the high order discrete approximate solution that is provided at mesh points. This continuous approximation is less accurate than the discrete approximation. For ’non-standard’ Volterra integro-differential equations with constant del...
متن کاملMethods from Multiscale Theory and Wavelets Applied to Nonlinear Dynamics
We show how fundamental ideas from signal processing, multiscale theory and wavelets may be applied to nonlinear dynamics. The problems from dynamics include itereated function systems (IFS), dynamical systems based on substitution such as the discrete systems built on rational functions of one complex variable and the corresponding Julia sets, and state spaces of subshifts in symbolic dynamics...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 1997
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(97)00142-8